Cell-adhesive and mechanically tunable glucose-based biodegradable hydrogels.

نویسندگان

  • Hyeongho Shin
  • Jason W Nichol
  • Ali Khademhosseini
چکیده

The development of materials with biomimetic mechanical and biological properties is of great interest for regenerative medicine applications. In particular, hydrogels are a promising class of biomaterials due to their high water content, which mimics that of natural tissues. We have synthesized a hydrophilic biodegradable polymer, designated poly(glucose malate)methacrylate (PGMma), which is composed of glucose and malic acid, commonly found in the human metabolic system. This polymer is made photocrosslinkable by the incorporation of methacrylate groups. The resulting properties of the hydrogels can be tuned by altering the reacting ratio of the starting materials, the degree of methacrylation, and the polymer concentration of the resultant hydrogel. Hydrogels exhibited compressive moduli ranging from 1.8 ± 0.4 kPa to 172.7 ± 36 kPa with compressive strain at failure from 37.5 ± 0.9% to 61.2 ± 1.1%, and hydration by mass ranging from 18.7 ± 0.5% to 114.1 ± 1.3%. PGMma hydrogels also showed a broad range of degradation rates and were cell-adhesive, enabling the spreading of adherent cells. Overall, this work introduces a class of cell-adhesive, mechanically tunable and biodegradable glucose-based hydrogels that may be useful for various tissue engineering and cell culture applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Cell - laden Hydrogels with High Mechanical Strength for Tissue Engineering Applications

The development of materials with biomimetic mechanical and biological properties is of great interest for regenerative medicine applications. Hydrogels are a promising class of biomaterials due to several advantages, however, the mechanical weakness remains a critical challenge for applications as tissue scaffolds. Particularly, scaffolds for load-bearing tissues such as cartilage and bone nee...

متن کامل

Modulating polymer chemistry to enhance non-viral gene delivery inside hydrogels with tunable matrix stiffness.

Non-viral gene delivery holds great promise for promoting tissue regeneration, and offers a potentially safer alternative than viral vectors. Great progress has been made to develop biodegradable polymeric vectors for non-viral gene delivery in 2D culture, which generally involves isolating and modifying cells in vitro, followed by subsequent transplantation in vivo. Scaffold-mediated gene deli...

متن کامل

Mechanically Reinforced Catechol-Containing Hydrogels with Improved Tissue Gluing Performance

In situ forming hydrogels with catechol groups as tissue reactive functionalities are interesting bioinspired materials for tissue adhesion. Poly(ethylene glycol) (PEG)–catechol tissue glues have been intensively investigated for this purpose. Different cross-linking mechanisms (oxidative or metal complexation) and cross-linking conditions (pH, oxidant concentration, etc.) have been studied in ...

متن کامل

Highly Elastic Biodegradable Single-Network Hydrogel for Cell Printing

Cell printing is becoming a common technique to fabricate cellularized printed scaffold for biomedical application. There are still significant challenges in soft tissue bioprinting using hydrogels, which requires live cells inside the hydrogels. Moreover, the resilient mechanical properties from hydrogels are also required to mechanically mimic the native soft tissues. Herein, we developed a v...

متن کامل

Mechanically and Chemically Tunable Cell Culture System for Studying the Myofibroblast Phenotype

Cell culture systems for studying the combined effects of matrix proteins and mechanical forces on the behavior of soft tissue cells have not been well developed. Here, we describe a new biomimetic cell culture system that allows for the study of mixtures of matrix proteins while controlling mechanical stiffness in a range that is physiological for soft tissues. This system consists of layer-by...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Acta biomaterialia

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2011